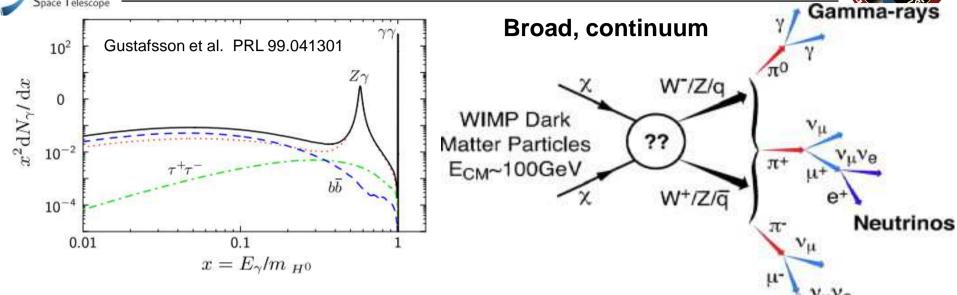
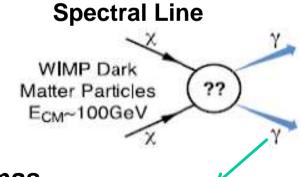


Indirect Searches for Dark Matter with the Fermi Large Area Telescope


Andrea Albert (SLAC)

On Behalf of the Fermi-LAT Collaboration


TAUP Sept 12th, 2013

Gamma-rays from WIMPs

- WIMP = Weakly Interacting Massive Particle
 - DM candidate (e.g. neutralino)
 - Believe the Milky Way sits in a large spherical "halo" or cloud of DM
 - Non-relativistic (cold) DM
- WIMPs annihilations (decays) may produce gammas
 - Dominant channels -> broad continuum
 - Monochromatic channels expected to be rare (loop-suppressed)

Or \mathbb{Z}^0 , \mathbb{H}^0 , etc

Fermi LAT

Public Data Release:

All γ -ray data made public within 24 hours (usually less)

Si-Strip Tracker:

convert γ->e+ereconstruct γ direction EM v. hadron separation

Hodoscopic Csl Calorimeter:

measure γ energy image EM shower EM v. hadron separation

Trigger and Filter:

Reduce data rate from ~10kHz to 300-500 Hz

Incident Angle (θ)

Fermi LAT Collaboration:

~400 Scientific Members, NASA / DOE & International Contributions

For detailed description of LAT performance see arXiv: 1206.1896

Anti-Coincidence Detector:

Charged particle separation

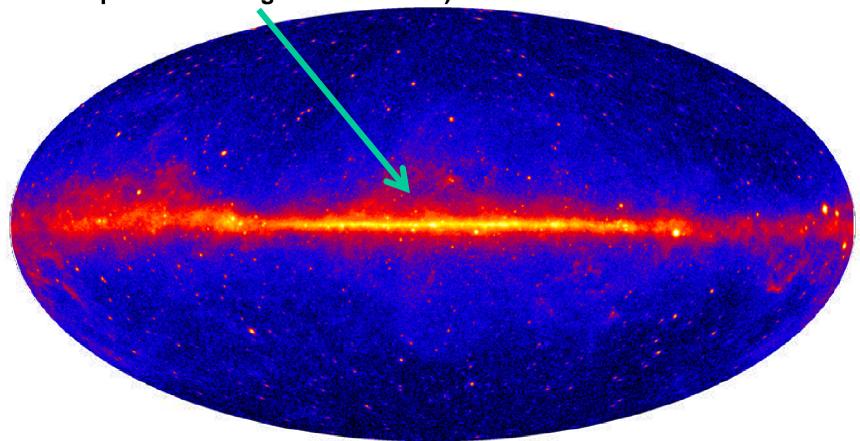
En Range and Coverage:

20 MeV to >300 GeV See whole sky every 3 hrs

9/12/2013

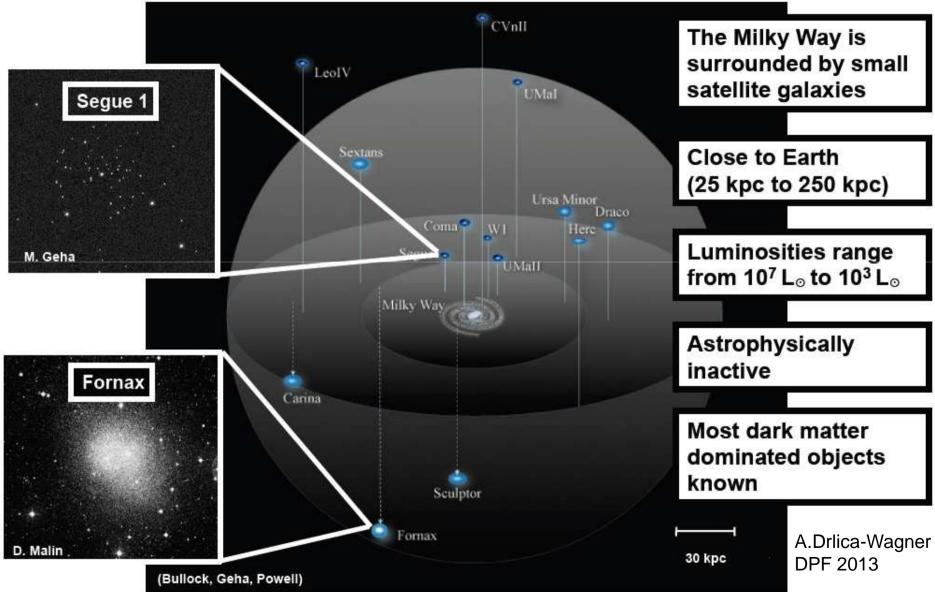
Galactic Distribution of DM

Inner galaxy Galactic Center: DM Clumps in the Halo: arXiv: 1308.3515 - Large Statistics - Few Astro. Bkg arXiv: 1201.2691 - Complicated by - Complicated by low Astrophysical Sources Anisotropy statistics, unknown loc arXiv: 1202.2856 Spectral Lines: Galactic latitude Smoking Gun Extragalactic: (looking above the Small Stat. - All galaxies - Isotropic Galactic plane) arXiv: 1205.2739 arXiv: 1305.5597 Galactic longitude (looking away from the Galactic center) Electrons: arXiv: 1205.6474 - Good Stats. arXiv:1203.6731 - Challenge: Backgrounds Galactic Halo: arXiv: 1109.0521 Complicated by diffuse arXiv:1107.4272 Nearby Galaxies: Y-rays from Cosmic Rays - dSph DM Enriched - Known location Milky Way Halo simulated by Taylor & Babul (2005) 2vr dwarfs Lower Statistics arXiv: 1108.3546 All-sky map of DM gamma ray emission (Baltz 2006)


Andrea Albert (SLAC)

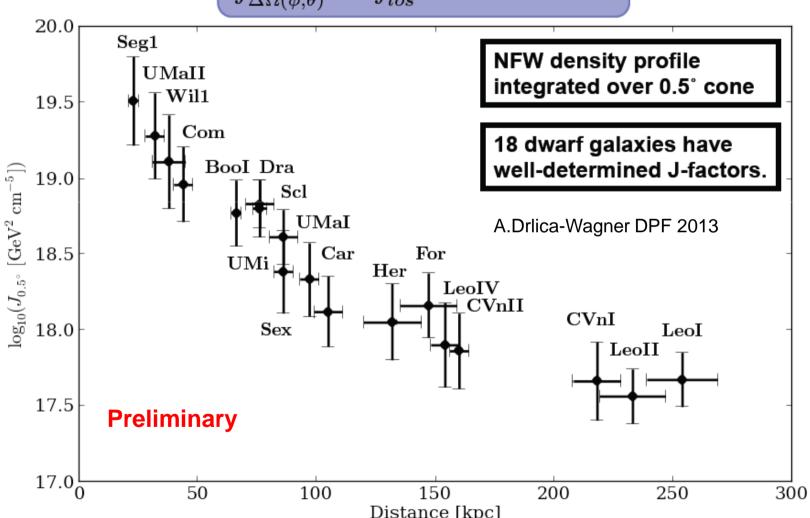
Large Astrophysical Background

Smooth component peaked in Galactic Center (central cuspiness has large uncertainties)


Milky Way Halo simulated by Taylor & Babul (2005) All-sky map of DM gamma-ray emission (Baltz 2006)

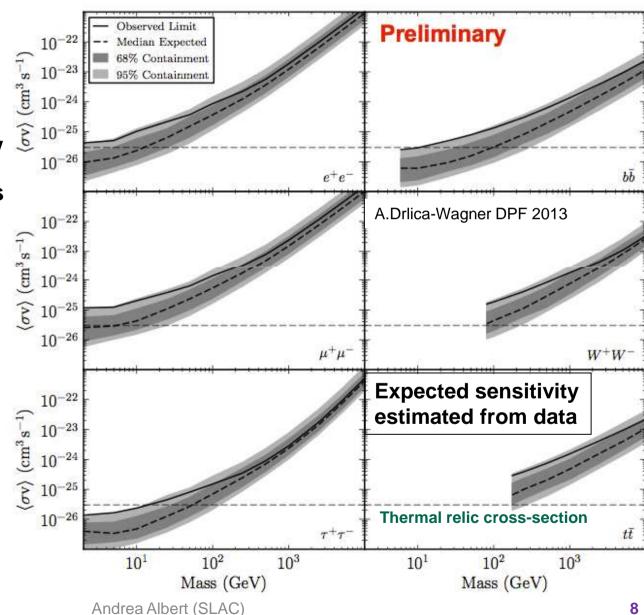
DM Search in MW Dwarf Galaxies

6

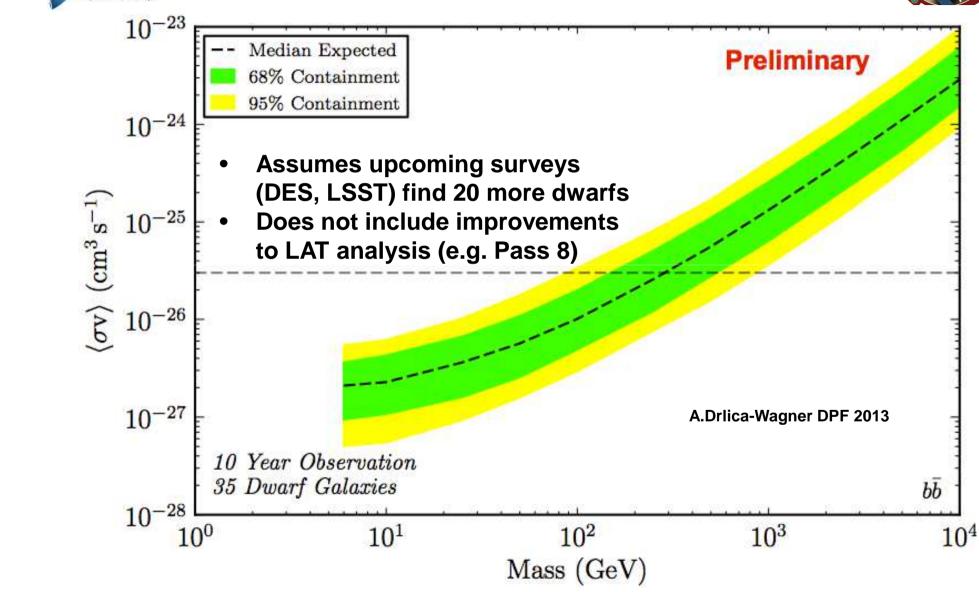


J-Factors for Dwarf Galaxies

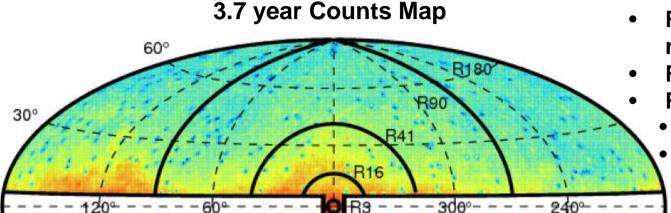
$$\int_{\Delta\Omega(\phi,\theta)} d\Omega' \int_{los} \rho^2(r(l,\phi')) dl(r,\phi')$$



Combined dSphs Results


- Joint likelihood analysis of 15 dwarf galaxies
- 4 years of data in energy range 500 MeV - 500 GeV
- **Account for uncertainties** in J-factor
 - **DM** distribution determined using observed stellar velocities
- 6 annihilation channels considered
- No DM seen
 - **Exclude canonical** thermal relic crosssection for masses less than ~10 GeV (in bb and tau's)

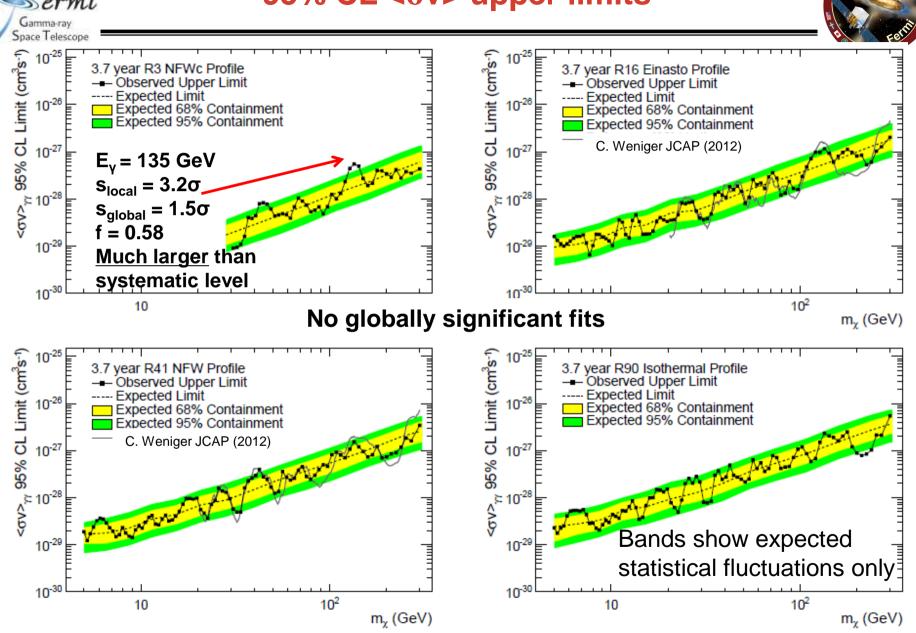
Projected Limit Improvement with dSphs



00

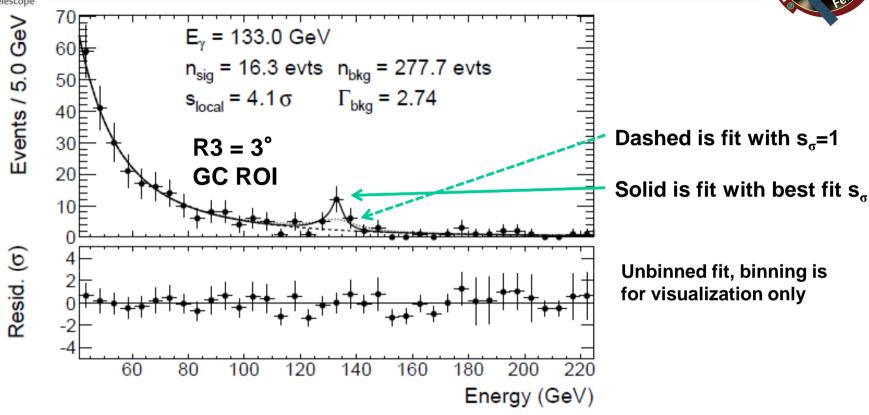
-30

Search for Spectral Lines

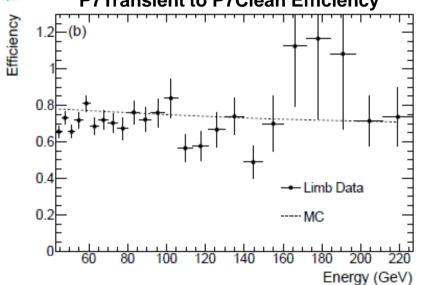

- R3 (contracted NFW, no src masking)
- R16 (Einasto)
- R41 (NFW)
- R90 (Isothermal)
 - R180 (DM Decay)

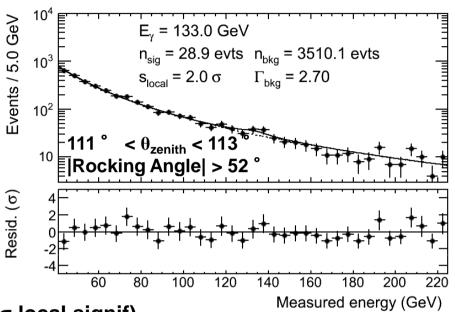
ROI optimization motivated by Bringmann et al 2012 (arXiv:1203.1312) and Weniger 2012 (arXiv:1204.2797)

- Search for lines from 5 300 GeV using 3.7 years of data
 - Maximum likelihood fit with improved energy dispersion model
- Use P7REP_CLEAN event selection
 - Reprocessed data with updated calorimeter calibration constants
 - Clean cuts are recommended for faint diffuse emission analysis
- Mask bright (>10 σ for E > 1 GeV) 2FGL sources


95% CL <σv> upper limits

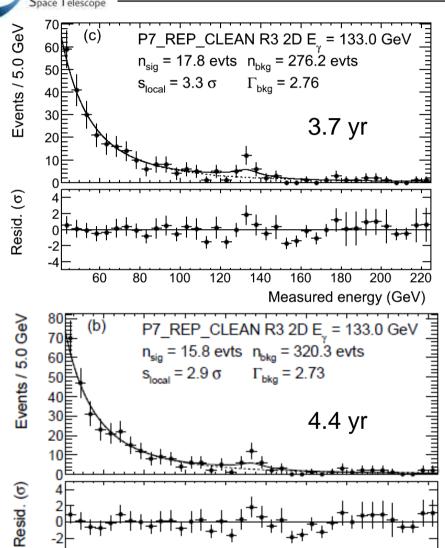
The Line-like Feature near 133 GeV


- 3.2σ (local) 2D fit at 133 GeV with reprocessed data
 - Fit with energy dispersion model that includes event-by-event energy recon. quality estimator P_F ("2D" model)
- Let width scale factor float in fit (while preserving shape)
 - $s_{\sigma} = 0.32^{+0.22}_{-0.07} (95\% CL)$ $\Delta TS = 9.4$
 - Feature in data is narrower than expected energy resolution ($s_{\sigma}=1$)

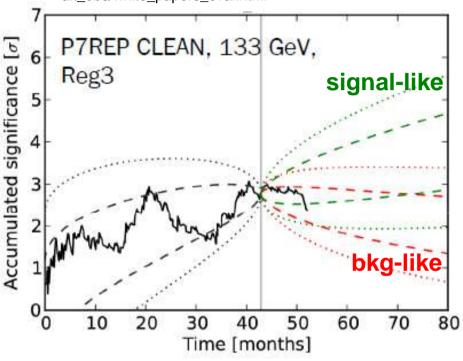


133 GeV in the Earth Limb spectrum

P7Transient to P7Clean Efficiency



- Line-like feature in the limb at 133 GeV (2.0 σ local signif)
 - Also reported by others: D. Whiteson (arXiv:1208.3677), A. Hektor et al (arXiv:1209.4548), and
 D. Finkbeiner et al (arXiv:1209.4562)
 - Appears when LAT is pointing at the Limb ($|\theta_r|$ <52°)
 - Surprising since limb should be smooth power-law
 - S/N_{limb} ~14%, while S/N_{R3} 61%
 - Limb feature not large enough to directly explain all the GC signal
- Dips in efficiency (less stringent Transient cuts -> Clean cuts) below and above 133 GeV
 - Appear to be related to CAL-TKR event direction agreement
 - Could be artificially sculpting the energy spectrum



133 GeV Feature in 4.4 year dataset

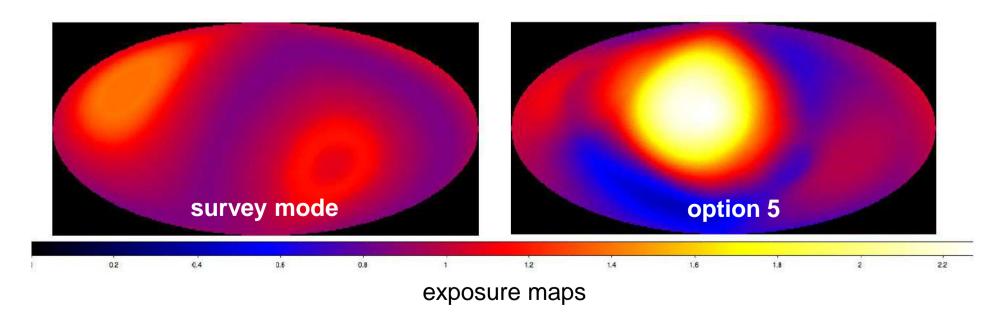
Weniger et al (2013) http://fermi.gsfc.nasa.gov/ssc/proposals/ alt_obs/white_papers_eval.html

- s_{local} decreased in 4.4 yr data by ~10% compared to 3.7 yr data
- Since spring 2012, feature has decrease
- More "background-like"

Measured energy (GeV)

Summary

- Search for DM signal from Milky Way Dwarf Galaxies
 - Updated 4yr limits are slightly higher than 2yr limits
 - No significant detection
 - Publication in internal review, should be submitted soon
- Search for spectral lines from 5--300 GeV in 5 ROIs
 - Submitted for publication in PRD (http://arxiv.org/abs/1305.5597)
 - No globally significant lines detected
 - Have set 95% CL $\Phi_{\gamma\gamma}$, $\langle \sigma v \rangle_{\gamma\gamma}$, and $\tau_{\gamma\gamma}$ limits
- See a narrow residual near 133 GeV in the GC
 - Not (completely) an obvious systematic error
 - Larger than expected systematic uncertainty
 - Feature in Limb is smaller than GC feature
 - Feature does not appear in inverse ROI
 - Bkg fluctuation?
 - Much narrower than expected energy resolution
 - Decreasing with more data
- More data and study will improve future LAT analyses
 - Pass 8 \rightarrow ~25% increase in A $_{\rm eff}$ and better (different) systematics


BACKUP SLIDES

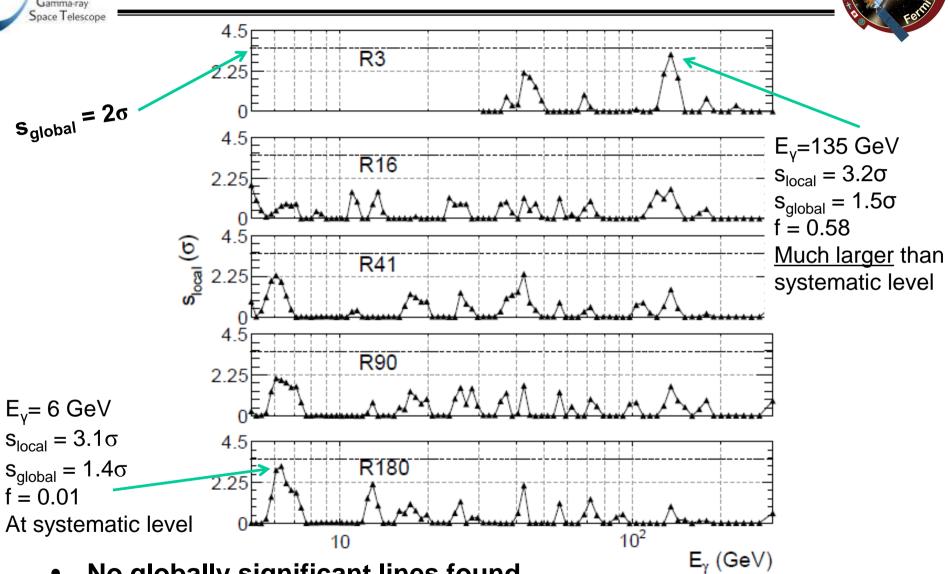
Modified Observing Strategy

- more info can be found on FSSC
 http://fermi.gsfc.nasa.gov/ssc/proposals/alt_obs/obs_modes.html
- Panel discussed white paper proposals July 25th and recommended a switch to "option 4 or similar" around December 2013.
 - Option 4 points to keep the GC in the field of view, while still providing relatively uniform all-sky coverage
- Public discussion page for community input
 - https://groups.google.com/forum/#!forum/fermi-observation-strategy-discussion

Systematic Effects in each ROI

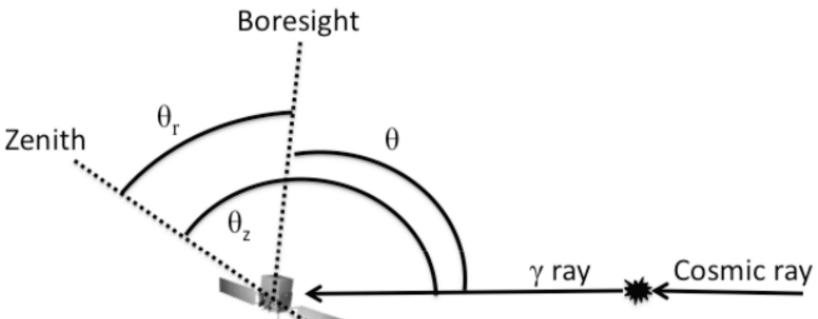
- Uncertainties that affect the conversion from n_{sig} to $\Phi_{\gamma\gamma}$
 - E.g., exposure uncertainties
 - Do not affect fit significance
- Uncertainties that scale n_{sig}
 - E.g., modeling energy dispersion
 - Affect significance, but will not induce false signals
- Uncertainties that induce or mask a signal
 - Express as uncertainty in fractional signal, δf

-	Quantity	Energy	R3	R16	R41	R90	R180
{	$\delta\epsilon/\epsilon$	$5~{ m GeV}$	0.10	0.10	0.11	0.12	0.14
	$\delta\epsilon/\epsilon$ $\delta\epsilon/\epsilon$	$300~{\rm GeV}$	0.10	0.10	0.12	0.13	0.16
-{	$\delta n_{sig}/n_{sig}$	All	$^{+0.07}_{-0.12}$	$^{+0.07}_{-0.12}$	$^{+0.07}_{-0.12}$	$^{+0.07}_{-0.12}$	$^{+0.07}_{-0.12}$
{	δf	$5~{ m GeV}$	0.020	0.020	0.008	0.008	0.008
	δf δf δf	$50~{\rm GeV}$	0.024	0.024	0.015	0.015	0.015
	δf	$300~{\rm GeV}$	0.032	0.032	0.035	0.035	0.035


$$TS = 2 ext{ln} rac{\mathcal{L}(n_{ ext{sig}} = n_{ ext{sig,best}})}{\mathcal{L}(n_{ ext{sig}} = 0)} \quad s_{ ext{local}} = \sqrt{TS}$$

$$\longrightarrow f = rac{n_{
m sig}}{b_{
m eff}} \simeq rac{s_{
m loca}^2}{n_{
m sig}}$$

Fitting Results



No globally significant lines found

Earth Limb Control Dataset

- CR interactions in atmosphere produce secondary γ rays
- Select $|\theta_r| > 52^0$ so not dominated by large θ events
 - 0.03% of the 3.7 year observing time
 - Negligible celestial "shine through"

Fitting Method

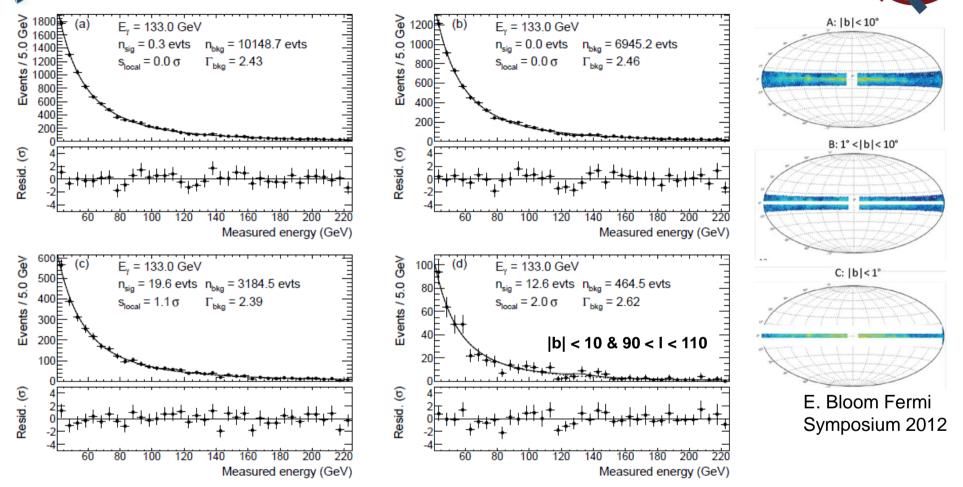
Predicted Spectrum

Signal Model

Background Model

$$C(E', P_{
m E} | ec{lpha}) = n_{
m sig} D_{
m eff}(E', P_{
m E} | E_{\gamma}) w_{
m sig}(P_{
m E}) + rac{n_{
m bkg}}{c_{
m bkg}} \left(rac{E'}{E_0}
ight)^{-\Gamma_{
m bkg}} \eta(E') w_{
m bkg}(P_{
m E}) \ D_{
m eff}(E'; E_{\gamma}) = \int^{FoV} \int^{ROI} D(E'; heta | E_{\gamma}) rac{I_{
m sig}(\hat{p}) \mathcal{E}(\hat{p}, heta, E_{\gamma})}{n_{
m sig}} d\Omega d\Omega_{\hat{v}} \ \eta(E') = \int^{FoV} \int^{ROI} rac{I_{
m bkg}(\hat{p}) \mathcal{E}(\hat{p}, heta, E_{\gamma})}{n_{
m bkg}} d\Omega d\Omega_{\hat{v}} \ D_{
m bkg} \left(\frac{E'}{E_0}\right)^{-\Gamma_{
m bkg}} d\Omega d\Omega_{\hat{v}} \ \eta(E') = \int^{FoV} \int^{ROI} \frac{I_{
m bkg}(\hat{p}) \mathcal{E}(\hat{p}, heta, E_{\gamma})}{n_{
m bkg}} d\Omega d\Omega_{\hat{v}} \ \eta(E') = \int^{FoV} \int^{ROI} \frac{I_{
m bkg}(\hat{p}) \mathcal{E}(\hat{p}, heta, E_{\gamma})}{n_{
m bkg}} d\Omega d\Omega_{\hat{v}} \ \eta(E') = \int^{FoV} \int^{ROI} \frac{I_{
m bkg}(\hat{p}) \mathcal{E}(\hat{p}, heta, E_{\gamma})}{n_{
m bkg}} d\Omega d\Omega_{\hat{v}} \ \eta(E') = \int^{FoV} \int^{ROI} \frac{I_{
m bkg}(\hat{p}) \mathcal{E}(\hat{p}, heta, E_{\gamma})}{n_{
m bkg}} d\Omega d\Omega_{\hat{v}} \ \eta(E') = \int^{FoV} \int^{ROI} \frac{I_{
m bkg}(\hat{p}) \mathcal{E}(\hat{p}, heta, E_{\gamma})}{n_{
m bkg}} d\Omega d\Omega_{\hat{v}} \ \eta(E') = \int^{FoV} \int^{ROI} \frac{I_{
m bkg}(\hat{p}) \mathcal{E}(\hat{p}, \theta, E_{\gamma})}{n_{
m bkg}} d\Omega d\Omega_{\hat{v}} \ \eta(E') = \int^{FoV} \int^{ROI} \frac{I_{
m bkg}(\hat{p}) \mathcal{E}(\hat{p}, \theta, E_{\gamma})}{n_{
m bkg}} d\Omega_{\phi} \Omega_{\phi} \ \eta(E') = \int^{FoV} \int^{ROI} \frac{I_{
m bkg}(\hat{p}) \mathcal{E}(\hat{p}, \theta, E_{\gamma})}{n_{
m bkg}} d\Omega_{\phi} \Omega_{\phi} \ \eta(E') = \int^{FoV} \int^{ROI} \frac{I_{
m bkg}(\hat{p}) \mathcal{E}(\hat{p}, \theta, E_{\gamma})}{n_{
m bkg}} d\Omega_{\phi} \Omega_{\phi} \ \eta(E') = \int^{ROI} \frac{I_{
m bkg}(\hat{p}) \mathcal{E}(\hat{p}, \theta, E_{\gamma})}{n_{
m bkg}} d\Omega_{\phi} \Omega_{\phi} \ \eta(E') = \int^{ROI} \frac{I_{
m bkg}(\hat{p}) \mathcal{E}(\hat{p}, \theta, E_{\gamma})}{n_{
m bkg}} d\Omega_{\phi} \Omega_{\phi} \ \eta(E') \ \eta(E') = \int^{ROI} \frac{I_{
m bkg}(\hat{p}) \mathcal{E}(\hat{p}, \theta, E_{\gamma})}{n_{
m bkg}} d\Omega_{\phi} \ \eta(E') \ \eta(E'$$

Effective Energy Dispersion

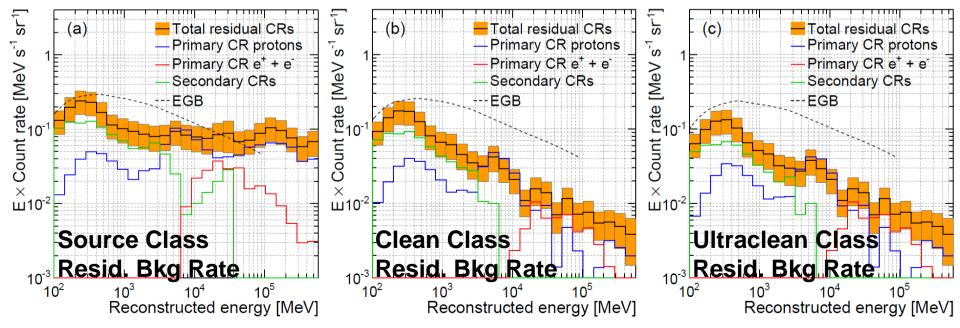

Incorporates energy reconstruction quality (P_F)

Effective Area Corrections

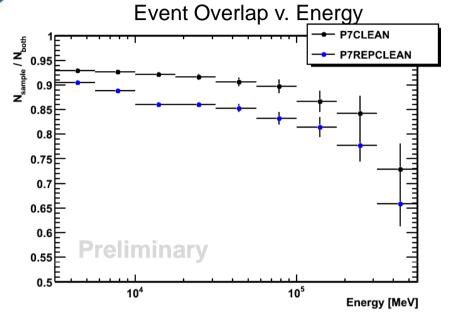
- Maximum likelihood fit at E_{γ} in sliding energy window ($\pm 6\sigma_{E}$)
 - Fit from 5 to 300 GeV
 - 0.5 σ_E steps (88 fit energies)
- n_{sig} , n_{bkg} , Γ_{bkg} free in fit
- c_{bkq} is given by normalization of background model
- Include P_E distributions for signal and background: w(P_E)
 - Take from data for each fit (entire ROI and energy fit window)

133 Feature in the inverse ROIs

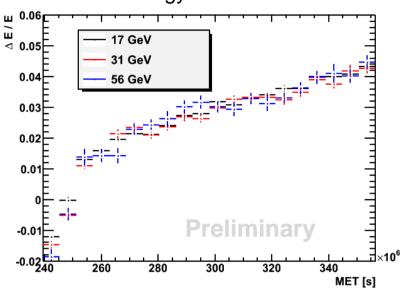
- No obvious feature at 133 GeV in the inverse ROIs
 - Would naively expect an instrumental effect to show up everywhere



Gamma-ray Event Classes

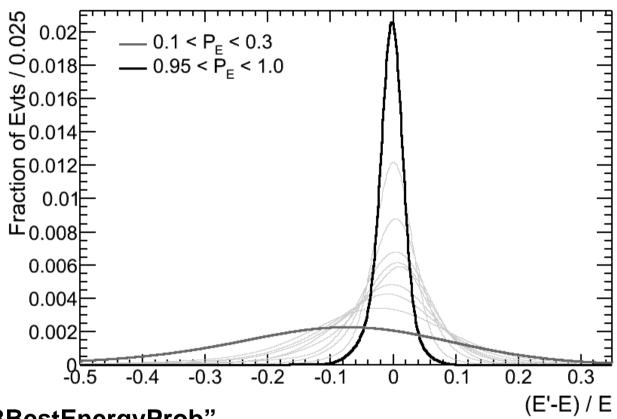

- Triggered events are dominated by CR background events
 - Need to define additional cuts to get γ -ray rich dataset
- Nested "event classes" for various types of γ ray sources
 - Transient: loosest, for flaring sources (cut in time)
 - Source: moderate, for bright sources (cut in space)
 - Clean: tight, for γ -ray diffuse
 - Ultraclean: tightest, for extragalactic γ rays

M. Ackermann et al (The Fermi LAT Collaboration) ApJS 203, 4 (2012) arXiv:1206.1896



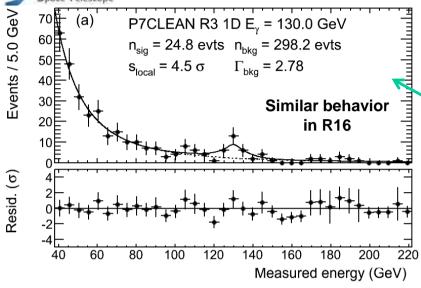
Data Reprocessing with Updated Calibrations

Energy Shift v. Time

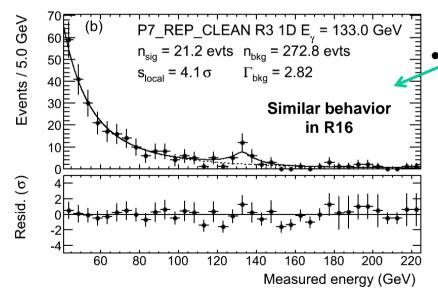


- Reprocessing Data with updated calibrations (primarily Calorimeter)
- •Improves the agreement between the TKR direction and the CAL shower axis and centroid at high E, improving the direction resolution
- •Corrects for loss in CAL light yield b/c of radiation damage (~4% in mission to date)
- •80%+ overlap in events between original and reprocessed samples

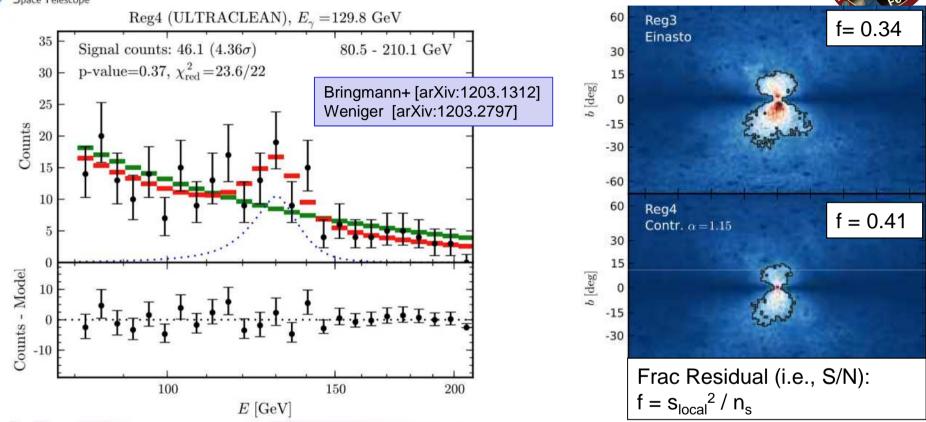
Energy Dispersion Model ("2D model")



- P_E = "CTBBestEnergyProb"
 - Probability that the reconstructed energy is within expected 68% containment
- Use triple gaussian model in 10 P_E bins
- Gives ~15% increase in statistical power
 - Similar to adding ~30% more data

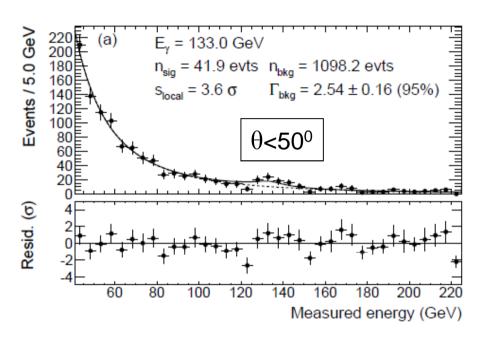


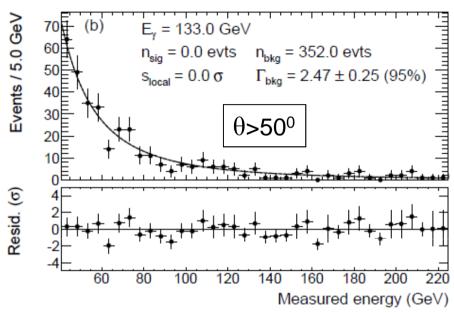
Studies of Line-like Feature near 133 GeV (1)


- Fits using simpler energy dispersion model
 - no use of energy recon. quality: P_F
 - 4.5σ (local) 1D fit at 130 GeV with unreprocessed data
 - Comparable to signif. reported in C.
 Weniger JCAP 1208 (2012) 007
 arXiv:1204.2797

- 4.1σ (local) 1D fit at 133 GeV with reprocessed data
 - Shifts higher in energy by a few percent, as expected

Reported Narrow Feature at 130 GeV (1)




- Bringmann et al. and Weniger showed evidence for a narrow spectral feature near 130 GeV near the Galactic center (GC)
- Signal is particularly strong in 2 out of 5 test regions, shown above
- Over 4σ , with S/N > 30%, up to ~60% in optimized regions of interest (ROI)

θ-dependence of 135 GeV feature

- Search in a 20x20 GC box (no source removal, 2D model)
- 135 GeV feature appears in low- θ events, but not in high- θ events
 - -3.5σ in θ <50° events should scale to 2σ for θ >50° events
- Same behavior observed in the Limb feature